Chapter 3: Formulae, Equations and Moles (Ch3 Chang, Ch3 Jespersen)

Mass Relationships in Chemical Reactions

Atomic mass (or weight) is the mass of an atom in atomic mass units.
Molecular weight is the mass of the molecule in atomic mass units.

The atomic mass unit, (amu) is defined as exactly $\frac{1}{12}$ of the mass of one ${ }^{12} \mathrm{C}$ atom.

$$
\begin{array}{lll}
1 \mathrm{amu}=1.66054 \times 10^{-24} \mathrm{~g} & \text { and } & 1 \mathrm{~g}=6.02214 \times 10^{23} \mathrm{amu} \\
{ }^{1} \mathrm{H} \text { atom }=1.6735 \times 10^{-24} \mathrm{~g} & \text { which is } & 1.0078 \mathrm{amu} .
\end{array}
$$

Average Atomic Masses

The average atomic mass is determined by using masses of the various isotopes, and their relative abundances.
Carbon is $\quad 98.892 \%{ }^{12} \mathrm{C}$ and $1.108 \%{ }^{13} \mathrm{C}$
${ }^{12} \mathrm{C}$ is 12 amu (exactly)
${ }^{13} \mathrm{C}$ is 13.00335 amu
$(0.98892)(12 \mathrm{amu})+(0.01108)(13.00335 \mathrm{amu})=12.011 \mathrm{amu}$
The average atomic mass of each element (expressed in amu) is also known as its atomic weight.

Problem: Boron obtained from borax $\left(\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right.$; sodium tetraborate decahydrate) deposits in Death Valley consists of two isotopes.

They are boron-10 and boron-11 with atomic masses of 10.013 amu and 11.009 amu , respectively.
The atomic mass of boron is 10.81 amu (see periodic table).
What are the relative abundances of each Boron isotope in this compound ?

$$
\text { There are only two isotopes so } \begin{array}{rlll}
10.013(\mathrm{X})+11.009(1-\mathrm{X}) & = & 10.81 \\
10.013 \mathrm{X}+11.009-11.009 \mathrm{X} & = & 10.81 \\
(10.013-11.009) \mathrm{X}+11.009 & = & 10.81 \\
-0.996 \mathrm{X} & = & -0.199 \\
\mathrm{X} & = & \frac{-0.199}{-0.996} \\
\mathrm{X} & = & 0.19998 .
\end{array}
$$

So the relative abundances are $0.20\left(20 \% ;{ }^{10} \mathrm{~B}\right)$ and $0.80\left(80 \% ;{ }^{11} \mathrm{~B}\right)$.

The Mole and Molar Mass

The mole (mol) is defined as the amount of matter that contains as many objects (atom, molecules, or whatever objects we are considering) as the number of atoms in exactly 12 g of ${ }^{12} \mathrm{C}$.

This number is given a special name: Avogadro's number, $\left(\mathrm{N}_{\mathrm{A}}\right)$.
Usually we will use 6.022×10^{23}.

The mass of single atom of an element (in amu) is numerically equal to the mass (in grams) of 1 mol of atoms of that element.

$$
\begin{array}{lll}
\text { One }{ }^{12} \mathrm{C} \text { atom weights } 12 \mathrm{amu} & \rightarrow & 1 \mathrm{~mol} \text { of }{ }^{12} \mathrm{C} \text { weighs } 12 \mathrm{~g} . \\
\text { One }{ }^{24} \mathrm{Mg} \text { atom weights } 24 \mathrm{amu} & \rightarrow & 1 \mathrm{~mol} \text { of }{ }^{24} \mathrm{Mg} \text { weighs } 24 \mathrm{~g} . \\
\text { One }{ }^{197} \mathrm{Au} \text { atom weights } 197 \mathrm{amu} & \rightarrow & 1 \mathrm{~mol} \text { of }{ }^{197} \mathrm{Au} \text { weighs } 197 \mathrm{~g} .
\end{array}
$$

The mass in grams of 1 mol of a substance is called its molar mass.

Formula and Molecular Weights (Masses)

The formula weight of a substance is the sum of the atomic weights of each atom in its chemical formula.
E.g. $\mathrm{H}_{2} \mathrm{SO}_{4}$ has a formula weight of 98.09 amu .

$$
\begin{aligned}
\text { Because } \quad \mathrm{FW} & =2(\mathrm{AW} \text { of } \mathrm{H})+(\mathrm{AW} \text { of } \mathrm{S})+4(\mathrm{AW} \text { of } \mathrm{O}) \\
& =2(1.008 \mathrm{amu})+32.07+4(16.00) \\
& =98.09 \mathrm{amu}
\end{aligned}
$$

If the chemical formula is the molecular formula, then the formula weight is also called the molecular weight.
E.g. glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, has a molecular weight of 180.16 amu

$$
\text { Because } \quad \mathrm{MW}=6(12.01)+12(1.008)+6(16.00) \quad=180.16 \mathrm{amu}
$$

With ionic substances such as NaCl , it is inappropriate to speak of molecules. We will use the formula weight.

$$
\mathrm{FW} \text { of } \mathrm{NaCl}=22.99+35.45=58.44 \mathrm{amu}
$$

The molar mass (in grams) of any substance is always numerically equal to its formula weight (in amu).

The molecular mass (also the molecular weight, $M W$) is the sum of all the atoms in a molecule.

The formula mass is the sum of all the atoms in the formula unit of any compound (molecular or ionic).

One $\mathrm{H}_{2} \mathrm{O}$ molecule weighs $18.02 \mathrm{amu} \quad \rightarrow \quad 1 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}$ weighs 18.02 g .

One $\mathrm{NO}_{3}{ }^{-}$ion weighs $62.01 \mathrm{amu} \quad \rightarrow \quad 1 \mathrm{~mol}$ of $\mathrm{NO}_{3}{ }^{-}$weighs 62.01 g.

One NaCl unit weighs $58.44 \mathrm{amu} \quad \rightarrow \quad 1 \mathrm{~mol}$ of NaCl weighs 58.44 g .

Percent Composition and Empirical Formulas

Percentage Composition from Formulas

Percent composition is the percentage by mass contributed by each element in the substance.

$$
\begin{aligned}
& \text { E.g. } \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \\
& \text { MW }=180.16 \mathrm{amu} \quad \text { since } \quad \mathrm{C}: \quad 6(12.01)=72.06 \\
& \text { H: 12(1.008) = } 12.096 \\
& \text { O: } 6(16.00)=96.00 \\
& \% \mathrm{C}=\frac{72.06}{180.16} \times 100 \%=40.00 \% \\
& \% \mathrm{H}=\frac{12.096}{180.16} \times 100 \%=6.714 \% \\
& \% \mathrm{O}=\frac{96.00}{180.16} \times 100 \%=53.29 \%
\end{aligned}
$$

Determining Empirical Formulas: Elemental analysis

The empirical formula is the smallest whole number ratio of the elements present.
It is consistent with the molecular formula, but does not have to be equal to it.
E.g. hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{MF}=\mathrm{H}_{2} \mathrm{O}_{2}$ but $\mathrm{EF}=\mathrm{HO}$.

The EF is obtained from experimental analysis of the compound.
Analysis gives the amount of each element as a percentage. If we assume the sample to be 100 g , we can divide these masses (the percentages in grams) by the appropriate atomic weight to obtain the number of moles of each element in 100 g .

We then divide the larger mole numbers by the smallest mole number gives a mole ratio.
To obtain the empirical formula, change the subscripts to integers.
(The ratios may not be exact due to experimental errors).

Problem: Vitamin C (ascorbic acid) contains 40.92% C, 4.58% H, and 54.50% O by mass.
What is the empirical formula of ascorbic acid?

$$
\begin{aligned}
& 40.92 \mathrm{~g} \mathrm{C} \mathrm{x} \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=3.407 \mathrm{~mol} \mathrm{C} \frac{3.407 \mathrm{~mol} \mathrm{C}}{3.406}=1 \mathrm{C} \stackrel{\mathrm{x} 3}{\Rightarrow}=3 \mathrm{C} \\
& 5.58 \mathrm{~g} \mathrm{H} \quad \mathrm{x} \frac{1 \mathrm{molH}}{1.008 \mathrm{~g} \mathrm{H}}=4.54 \mathrm{molH} \quad \frac{4.54 \mathrm{~mol} \mathrm{H}}{3.406}=1.33 \mathrm{H} \stackrel{\mathrm{x} 3}{\Rightarrow}=4 \mathrm{H} \\
& 54.50 \mathrm{~g} \mathrm{O} x \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=3.406 \mathrm{~mol} \mathrm{O} \frac{3.406 \mathrm{~mol} \mathrm{O}}{3.406}=1 \mathrm{O} \stackrel{\mathrm{x} 3}{\Rightarrow}=3 \mathrm{O} \\
& \sqrt{6} \\
& \mathrm{EF}=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}
\end{aligned}
$$

(Calculate moles of each element, then divide by the smallest mole number (3.406), and convert to smallest whole number integers, and use subscripts for the Empirical Formula).

Determination of Molecular Formulas

Molecular formula is the actual number of each atom in the molecule.

To calculate the molecular formula we must know the approximate molar mass.
The molar mass (of the molecule) must be an integral multiple of the molar mass of the empirical formula.

Problem: ascorbic acid has a molar mass of $176.12 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula?

$$
\begin{aligned}
& \text { We know } \mathrm{EF}(\text { previous slide })=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}=3(12.01)+4(1.008)+3(16.00)=88.06 \mathrm{~g} / \mathrm{mol} \\
& \begin{aligned}
\frac{176.12 \mathrm{~g} / \mathrm{mol}}{88.06 \mathrm{~g} / \mathrm{mol}}=2 \quad \text { So the } \mathrm{MF} & =2 \times\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}\right)
\end{aligned} \\
& =\mathrm{C}_{6} \mathbf{H}_{8} \mathrm{O}_{6}
\end{aligned}
$$

Empirical Formula from Combustion Analysis

Problem: When a 0.860 g sample of an organic compound containing C, H, and O was burned completely in oxygen, 1.64 g of CO_{2} and 1.01 g of $\mathrm{H}_{2} \mathrm{O}$ were produced.

What is the empirical formula of the compound?
Assume all the Carbon becomes CO_{2}, and all the Hydrogen becomes $\mathrm{H}_{2} \mathrm{O}$.
Since we only have C, H and O, the Oxygen is obtained by the difference.

```
            This much CO
                    is this
                    number Which came from Which is this
                    of moles this moles of C number of }
MW of CO2----------- 1.64 \mp@subsup{\textrm{g CO}}{2}{4.01\mp@subsup{\textrm{g CO}}{2}{}}\quad\textrm{x}
    1.01\mp@subsup{\textrm{g H}}{2}{}\textrm{O}\quadx\quad\frac{1\mp@subsup{\textrm{mol H}}{2}{O}}{18.02\mp@subsup{\textrm{g H}}{2}{}\textrm{O}}\quad\textrm{x}}\frac{2\textrm{mol H}}{1\mp@subsup{\textrm{molH2}}{2}{O}}\textrm{O
MW of H2O
is }18.02\textrm{g}/\textrm{mol
            Mass of O = 0.860g total - (0.4475g C + 0.1121g H)
                        = 0.300 g O

Now we know masses of C, H and O, we can calculate the EF like previously...
\[
\begin{array}{lll}
0.448 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=0.0373 \mathrm{~mol} \mathrm{C} & \frac{0.0373 \mathrm{~mol} \mathrm{C}}{0.0188}=2 \mathrm{C} \\
0.112 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=0.111 \mathrm{~mol} \mathrm{H} & \frac{0.111 \mathrm{~mol} \mathrm{H}}{0.0188}=6 \mathrm{H} & \mathbf{E F}=\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{6}} \mathbf{O} \\
0.300 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=0.0188 \mathrm{~mol} \mathrm{O} & \frac{0.0188 \mathrm{~mol} \mathrm{O}}{0.0188}=1 \mathrm{O}
\end{array}
\]

\section*{Chemical Equations}

A chemical reaction is defined as a process in which a substance (or substances) is changed into one or more new substances.

A chemical reaction is represented by a chemical equation:


Equations must be balanced, which means equal amounts of each element on each side of the equation.
\begin{tabular}{rll}
\(2 \mathrm{H}_{2}+\mathrm{O}_{2}\) & \(\rightarrow 2 \mathrm{H}_{2} \mathrm{O}\) \\
On the left: & 4 H and 2 O \\
On the right: & 4 H and \(2 \mathrm{O} \quad\) (All atoms are balanced).
\end{tabular}

When balancing an equation, never change the subscripts (as this alters the chemical identity).
Balance an equation by changing the coefficients (this only changes relative amounts of a substance, not the identity.
\[
\begin{aligned}
& \mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \text { (unbalanced equation: } \\
& 1 \mathrm{C}, \mathbf{4} \mathrm{H} \text { and } \mathbf{2} \mathrm{O} \rightarrow 1 \mathrm{C}, \mathbf{2} \mathrm{H} \text { and } \mathbf{3} \mathrm{O} \text { ) } \\
& \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \quad \text { (balanced equation: } \\
& 1 \mathrm{C}, 4 \mathrm{H} \text { and } 4 \mathrm{O} \rightarrow 1 \mathrm{C}, 4 \mathrm{H} \text { and } 4 \mathrm{O} \text { ) }
\end{aligned}
\]

\section*{Guidelines}
1. write an unbalanced equation
2. use (whole number) coefficients to indicate how many formula units are required to balance the equation
3. balance those species that occur in the fewest formulas on each side.
4. reduce coefficients to smallest whole number values
5. when balancing reactions involving organic compounds, balance in the order: \(\mathrm{C}, \mathrm{H}, \mathrm{O}\).
\[
\begin{aligned}
& \text { E.g. } \mathrm{KClO}_{3} \rightarrow \mathrm{KCl} \quad+\quad \mathrm{O}_{2} \text { (unbalanced in O's) } \\
& \mathrm{KClO}_{3} \rightarrow \mathrm{KCl}+\frac{3}{2} \mathrm{O}_{2} \text { (balanced, but not whole numbers, so everything } \times 2 \text { 2) } \\
& \mathbf{2} \mathbf{K C l O}_{\mathbf{3}} \rightarrow \mathbf{2} \mathbf{K C l}+\mathbf{3} \mathbf{O}_{\mathbf{2}} \text { (balanced in } \mathrm{K}, \mathrm{Cl} \text { and } \mathrm{O} \text { 's) }
\end{aligned}
\]

An organic example to highlight Guideline 5
\[
\mathrm{C}_{6} \mathrm{H}_{12}+\mathrm{O}_{2} \rightarrow \quad \mathrm{CO}_{2} \quad+\quad \mathrm{H}_{2} \mathrm{O} \quad \text { (unbalanced in } \mathrm{C}, \mathrm{H} \text { and } \mathrm{O} \text { 's) }
\]

Balance C's \(\mathrm{C}_{6} \mathrm{H}_{12}+\mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2} \quad+\quad \mathrm{H}_{2} \mathrm{O} \quad\) (unbalanced in H and O 's)

Balance H's
\(\mathrm{C}_{6} \mathrm{H}_{12}+\)
\(\mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \quad\) (unbalanced in O 's)

Balance O's
\(\mathrm{C}_{6} \mathrm{H}_{12}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \quad\) (balanced)

To provide additional information, chemists often indicate the physical states (phases) of the reactants and products by using the letters \(\mathbf{g}, \mathbf{l}\), and \(\mathbf{s}\) to denote gas, liquid, and solid, respectively.

Sometimes we will write (aq) to denote an aqueous (water) environment.

Chemical symbols represent both the microscopic and macroscopic level.
\begin{tabular}{lllll}
\(2 \mathrm{H}_{2(\mathrm{~g})}\) & + & \(\mathrm{O}_{2(\mathrm{~g})}\) & \(\rightarrow\) & \(2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\) \\
2 molecules & + & 1 molecule & \(\rightarrow\) & 2 molecules \\
\(2\left(6 \times 10^{23}\right.\) molecules \()\) & + & \(6 \times 10^{23}\) molecules & \(\rightarrow\) & \(2\left(6 \times 10^{23}\right.\) molecules \()\) \\
2 moles & + & 1 mole & \(\rightarrow\) & 2 moles \\
\(2(2.02 \mathrm{~g})\) & & 32.00 g & \(\rightarrow\) & \(2(18.02 \mathrm{~g})\) \\
& \(=\) & 36.04 g reactants & & \(\rightarrow\)
\end{tabular}

The coefficients in a balanced chemical equation can be interpreted as both:
- the relative numbers of molecules (or formula units) involved in the reaction, and
- the relative numbers of moles.

\section*{Stoichiometry (essentially Chemical Arithmetic)}

The term stoichiometry was first used by Richter in 1792.
It is defined as the quantitative study of relative quantities of reactants and products in chemical reactions.
The term is derived from the Greek words for "element" and "measure".

So for a generic balanced equation:
\[
\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}
\]

```

E.g. 2 H2 + O O2
2 mol H2 + 1 mol O}\mp@code{C

```

Both sides of the arrow are stoichiometrically equivalent (for a balanced equation).

Problem: how many grams of \(\mathrm{H}_{2} \mathrm{O}\) can be produced from \(40.0 \mathrm{~g} \mathrm{O}_{2}\) ?


Problem: For the combustion of butane, \(\mathrm{C}_{4} \mathrm{H}_{10}\), if we burn 1.00 g of butane, what mass of \(\mathrm{CO}_{2}\) is produced ?

First we need a balanced equation:


\section*{Yields of Chemical Reactions}

The quantity of product that is calculated to form when all of the limiting reactant reacts is called the theoretical yield.

The amount actually obtained in a reaction is called the actual yield.
The actual yield is typically lower due to real practical issues such as product sticking to glassware/filter paper; evaporation; formation of byproducts; etc.

The percent yield of a reaction relates the actual yield to the theoretical (calculated) yield:
\[
\text { Percent Yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%
\]

\section*{Reactions with Limiting Amounts of Reactants}

The reagent that is completely consumed in a reaction is called the limiting reactant or limiting reagent, because it determines (limits) the amount of product formed.

The other reactants are sometimes called excess reactants or excess reagents.

Problem: If 5.88 g of \(\mathrm{B}_{2} \mathrm{~S}_{3}\) is mixed with 7.85 g of water, and the products are boric acid and hydrogen sulfide:
- Which reactant is limiting and which reactant is in excess ?
- How many grams of the excess reactant are consumed ?
- How many grams of boric acid are produced?
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathrm{B}_{2} \mathrm{~S}_{3}+\) & \(\mathrm{H}_{2} \mathrm{O}\) & \(\rightarrow\) & \(\mathrm{H}_{3} \mathrm{BO}_{3}\) & + & \(\mathrm{H}_{2} \mathrm{~S}\) & (Got pdts in the eqn, but unbalanced) \\
\hline \(\mathrm{B}_{2} \mathrm{~S}_{3}+\) & \(\mathrm{H}_{2} \mathrm{O}\) & \(\rightarrow\) & \(2 \mathrm{H}_{3} \mathrm{BO}_{3}\) & + & \(\mathrm{H}_{2} \mathrm{~S}\) & (Now balanced in B) \\
\hline \(\mathrm{B}_{2} \mathrm{~S}_{3}+\) & \(\mathrm{H}_{2} \mathrm{O}\) & \(\rightarrow\) & \(2 \mathrm{H}_{3} \mathrm{BO}_{3}\) & + & \(3 \mathrm{H}_{2} \mathrm{~S}\) & (Now balanced in B and S) \\
\hline \(\mathrm{B}_{2} \mathrm{~S}_{3}+\) & \(6 \mathrm{H}_{2} \mathrm{O}\) & \(\rightarrow\) & \(2 \mathrm{H}_{3} \mathrm{BO}_{3}\) & + & \(3 \mathrm{H}_{2} \mathrm{~S}\) & (Balanced in B, S and O, and H) \\
\hline
\end{tabular}

Now that we have a balanced equation, and know the amount of \(\mathrm{H}_{2} \mathrm{O}\) and \(\mathrm{B}_{2} \mathrm{~S}_{3}\), we can look at the stoichiometry...
\(\mathrm{B}_{2} \mathrm{~S}_{3}+\mathbf{6} \mathrm{H}_{2} \mathrm{O} \quad \rightarrow \quad 2 \mathrm{H}_{3} \mathrm{BO}_{3}+3 \mathrm{H}_{2} \mathrm{~S}\)
Moles of \(\mathrm{H}_{3} \mathrm{BO}_{3}\)
\(5.88 \mathrm{~g} \mathrm{~B}_{2} \mathrm{~S}_{3} \times \frac{1 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{~S}_{3}}{117.83 \mathrm{~g} \mathrm{~B}_{2} \mathrm{~S}_{3}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{3} \mathrm{BO}_{3}}{1 \mathrm{~mol} \mathrm{~B}_{2} \mathrm{~S}_{3}}=\begin{aligned} & 0.0998 \mathrm{~mol} \mathrm{H}_{3} \mathrm{BO}_{3} \\ & \text { Maximum possible amount }\end{aligned}\) produced by this much \(\mathrm{B}_{2} \mathrm{~S}_{3}\)

Moles of \(\mathrm{B}_{2} \mathrm{~S}_{3}\)
\(\mathrm{MW} \mathrm{B}_{2} \mathrm{~S}_{3}=2(10.81)+3(32.06)=117.83 \mathrm{~g} / \mathrm{mol}\)
Moles of \(\mathrm{H}_{3} \mathrm{BO}_{3}\)
\(\overbrace{}^{\longrightarrow}\)
\(7.85 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{3} \mathrm{BO}_{3}}{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=\begin{aligned} & 0.145 \mathrm{~mol} \mathrm{H}_{3} \mathrm{BO}_{3} \\ & \begin{array}{l}\text { Maximum possible amount } \\ \text { produced by this much } \mathrm{H}_{2} \mathrm{O}\end{array}\end{aligned}\)

Moles of \(\mathrm{H}_{2} \mathrm{O}\)
MW \(\mathrm{H}_{2} \mathrm{O}=18.02 \mathrm{~g} / \mathrm{mol}\)
\(\mathrm{B}_{2} \mathrm{~S}_{3}\) is the limiting reagent. ( \(\mathrm{H}_{2} \mathrm{O}\) is in excess).
(All the \(\mathrm{B}_{2} \mathrm{~S}_{3}\) will be consumed before the \(\mathrm{H}_{2} \mathrm{O}\). There is not enough \(\mathrm{B}_{2} \mathrm{~S}_{3}\) to have all the \(\mathrm{H}_{2} \mathrm{O}\) react).
- How many grams of the excess reactant are consumed ?

Moles of \(\mathrm{H}_{2} \mathrm{O}\)

5.40 g consumed from an original amount of 7.85 g , leaves \((7.85-5.40 \mathrm{~g})=2.45 \mathrm{~g}\) of water remaining.
- How many grams of boric acid are produced ?


Problem: Adipic acid \(\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}\right)\) is used to produce nylon. The acid is made commercially by controlled reaction between cyclohexane \(\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)\) and \(\mathrm{O}_{2}\).
\[
2 \mathrm{C}_{6} \mathrm{H}_{12}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O} \quad \text { (balanced) }
\]

Assume you carry out this reaction starting with 25.0 g of cyclohexane and that cyclohexane is the limiting reagent.
- What is the theoretical yield of adipic acid?
- If you obtain 35.5 g of adipic acid from your reaction, what is the percent yield of adipic acid?
\[
\text { Moles of } \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}
\]
\(25.0 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \times \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12}}{84.16 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12}} \times \frac{2 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}}{2 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12}} \times \frac{146.14 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}}{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}}=43.4 \mathrm{~g} \mathrm{of} \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}\)


Moles of \(\mathrm{C}_{6} \mathrm{H}_{12}\)
MW C \(\mathrm{C}_{6} \mathrm{H}_{12}=84.16 \mathrm{~g} / \mathrm{mol}\)
Mass of \(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}\)
MW C \(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}=146.14 \mathrm{~g} / \mathrm{mol}\)

Theoretical yield is 43.4 g .
- If you actually obtain 35.5 g of adipic acid from your reaction, what is the percent yield of adipic acid ?

Using Percent Yield \(=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%\)
\(\frac{35.5 \mathrm{~g}}{43.4 \mathrm{~g}} \quad \mathrm{x} 100 \%=81.8 \%\) yield

Stoichiometry Summary
```

