Chemical Principles 50:160:115

Fall 2016

```
Chemistry is easy...IF: don't fall behind
understand, not just memorize
do problems
remember things from one chapter to the next
Proficient in: Explanations at the atomic/molecular level
Qualitative explanations (illustrations / examples / words)
Quantitative explanations using math
Simple (algebraic) calculations
```

Notes are available at: http://roche.camden.rutgers.edu/ Office: SCI 311 Labs: SCI 309/319/328 Tel: (856) 225-6166

Chapter 1: Matter and Measurement (Ch1 Chang, Ch1 Jespersen)

Chemistry is: The Science of Transformation.
Explanations at the Atomic and Molecular Level.
The Molecular Science.

The Scientific Method

The scientific method is a way to ask and answer questions by making observations and doing experiments.
The steps of the scientific method are to:

- Ask a question
- Do background research (find out what is known)
- Construct a hypothesis (tentative explanation)
- Test your hypothesis by doing an experiment
- Analyze your data and draw a conclusion

- Communicate your results

It is important for your experiment to be a fair test. A "fair test" occurs when you change only one factor (variable) and keep all other conditions the same.

The cyclic process means science is always evolving.

Facts, Laws, Hypotheses and Theories

Fact: Observations about the world around us. E.g. "It's bright outside."

Hypothesis: A proposed explanation for a phenomenon made as a starting point for further investigation.
E.g. "It's bright outside because it is likely that the sun is out."

Theory: A well-substantiated explanation acquired through the scientific method and repeatedly tested and confirmed through observation and experimentation.
E.g. "When the sun is out, it makes it bright outside."

Law: A statement based on repeated experimental observations that describes some phenomenon of nature. Proof that something happens and how it happens, but not why it happens.
E.g. Law of Conservation of Energy, states that energy cannot be created or destroyed in an isolated system.

Chemistry requires precision.
You will be learning a new language - scientific terms have very precise meanings; attention to detail is very important.

Classification of Matter

Matter - anything that occupies space and has mass.
Substance - a form of matter that has a definite composition and distinct properties.
Mixture - a combination of two or more substances in which the substances retain their distinct identities.
Homogenous mixture - is a mixture where the composition is the same throughout (e.g. air, diet coke).
Heterogeneous mixture - is a mixture where the composition is not uniform throughout (e.g. diet coke with ice).

Element - a substance that cannot be separated into simpler substances by chemical means.
The elements are named, and often referred to by their chemical symbols: e.g. $\mathbf{H}, \mathbf{O}, \mathbf{N}, \mathbf{C}, \mathbf{L i}, \mathbf{C l}, \mathbf{B r}, \mathbf{H g}, \mathbf{A u}$.
Compound - a substance composed of atoms of two or more elements united in fixed proportions.

Relationship between Elements, Compounds, and Substances

Air is a (homogeneous) mixture.
Physically separate it into pure substances $\left(\mathrm{N}_{2}, \mathrm{CO}_{2}, \mathrm{O}_{2}\right.$, etc.).
Chemically separate the compounds into elements $\left(\mathrm{CO}_{2} \rightarrow \mathrm{C}\right.$ and $\left.\mathrm{O}_{2}\right)$.

Three States of Matter

Solids have fixed shape and volume.
Particles are close together.
Liquids have fixed volume, but adopt the container's shape.
Particles are close together.
Gases expand to fill the container.
Particles are far apart.

Solid \rightarrow Liquid is melting, and Liquid \rightarrow Gas is boiling.

Properties

Extensive Properties depend on the amount of matter.
For example: \quad Mass (the quantity of matter in a given sample of substance).
Volume of a substance.

Intensive Properties do not depend on the amount of matter.
For example: Density.
Melting or Boiling Points.

Physical Properties can be measured (and observed) without changing the composition or identity of a substance.
E.g. Temperature, melting point, color, amount, odor, solubility, electrical conductivity.

Chemical Properties require that a chemical change occur to observe the property.
E.g. Iron will rust, coal is combustible, silver jewelry can tarnish.

Physical Change means the matter is rearranged, but the internal structure is not affected.
For example: Boiling water (water molecules are forced away from each other when the liquid changes to vapor, but the molecules are still $\mathrm{H}_{2} \mathrm{O}$).

Dissolving sugar in water (sugar molecules are dispersed within the water, but the individual sugar molecules are unchanged).

Dicing potatoes (cutting usually separates molecules without changing them).

Chemical Change requires the formation of new chemical substances.
For example: Iron rusting (iron oxide forms).
Gasoline burning (water vapor and carbon dioxide form).
Eggs cooking (fluid protein molecules uncoil and crosslink to form a network).
Suntanning (vitamin D and melanin is produced).

A chemical change is also known as a Chemical Reaction.

Iron nails rusting is a chemical process (iron converted to iron oxide), therefore it is a chemical property of iron that it will rust.

Macroscopic refers to something we can directly observe (with the naked eye).
Microscopic refers to indirect observation, where a tool/aid/instrument is needed to assist in the observation.

Units - we need something as a reference or standard (for meaningful comparisons and communication).
Do I weigh 13.5 stone, or 189 lbs or 85.7 kg ?

International System of Units (SI Units)

There are 7 base units, we will use 6 of them (luminous intensity in candela, cd, is not covered).

Physical quantity	Name of Unit	Abbreviation
Mass	Kilogram	kg
Length	Meter	m
Temperature	Kelvin	K
Amount of Substance	Mole	mol
Time	Second	s
Electric Current	Ampere	A

In science we deal with both very large and very small numbers, so we use prefixes before our units.

Prefix	Abbreviation	Meaning	Example
Giga	G	10^{9}	Gigabyte
Mega	M	10^{6}	Megawatt
Kilo	k	10^{3}	Kilogram
Deci	d	10^{-1}	Deciliter
Centi	c	10^{-2}	Centimeter
Milli	m	10^{-3}	Millimeter
Micro	μ	10^{-6}	Micrometer
Nano	n	10^{-9}	Nanometer
Pico	p	10^{-12}	Picomole

There are also common non-SI units often used in Chemistry:

Measurement	Unit	Abbreviation	Value in SI Units
Length	angstrom	\AA	$1 \AA=0.1 \mathrm{~nm}=10^{-10} \mathrm{~m}$
Mass	atomic mass unit	$\mathrm{u}(\mathrm{amu})$	$1 \mathrm{u}=1.66054 \times 10^{-27} \mathrm{~kg}$ (rounded to six digits)
	metric ton	t	$1 \mathrm{t}=10^{3} \mathrm{~kg}$
Time	minute	min.	$1 \mathrm{~min} .=60 \mathrm{~s}$
	hour	h	$1 \mathrm{~h}=60 \mathrm{~min} .=3600 \mathrm{~s}$
Temperature	degree Celsius	${ }^{\circ} \mathrm{C}$	$T_{\mathrm{K}}=t^{\circ} \mathrm{C}+273.15$
Volume	liter	L	$1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$

Or in everyday language:

Measurement	English Unit	English/SI Equality ${ }^{\text {a }}$
Length	inch	$1 \mathrm{in} .=2.54 \mathrm{~cm}$
	yard	$1 \mathrm{yd}=0.9144 \mathrm{~m}$
	mile	$1 \mathrm{mi}=1.609 \mathrm{~km}$
Mass	pound	$1 \mathrm{lb}=453.6 \mathrm{~g}$
	ounce (mass)	$1 \mathrm{oz}=28.35 \mathrm{~g}$
Volume	gallon	$1 \mathrm{gal}=3.785 \mathrm{~L}$
	quart	$1 \mathrm{qt}=946.4 \mathrm{~mL}$
	ounce (fluid)	$1 \mathrm{oz}=29.6 \mathrm{~mL}$
	AJR Ch1 Matter and Measurement.docx Slide 11	

Measuring Temperature

Fahrenheit - common in everyday use (e.g. weather, body temperature), but not in science.
Water freezes at $32^{\circ} \mathrm{F}$, and boils at $212{ }^{\circ} \mathrm{F}$.

Celsius scale - commonly used in science (even though it is a non-SI unit).
Based on freezing point $\left(0^{\circ} \mathrm{C}\right)$ and boiling point $\left(100^{\circ} \mathrm{C}\right)$ of water.

Kelvin scale - based on absolute zero being 0 K , (lowest possible temperature), which is $-273.15{ }^{\circ} \mathrm{C}$. Water freezes at 273.15 K and boils at 373.15 K .

Notice the Celsius and Kelvin have equal size units, but differ at their zero (start) point.
Conversions

$$
\begin{aligned}
& \mathrm{K}={ }^{\circ} \mathrm{C}+273.15 \\
& \\
& \quad{ }^{\circ} \mathrm{C}=\frac{5}{9}\left({ }^{\circ} \mathrm{F}-32\right) \\
& { }^{\circ} \mathrm{F}=\frac{9}{5}{ }^{\circ} \mathrm{C}+32
\end{aligned}
$$

Notice for Kelvin and Celsius, $\Delta \mathrm{T}$ is the same numerical value (same size units).

(So a 100 K increase is the same as $100^{\circ} \mathrm{C}$ increase - but NOT the same as a $100^{\circ} \mathrm{F}$ increase).

Derived Units: Measuring Volume

A derived unit is a unit comprised of a combination of the seven base units.
Length is an SI unit, so area (two lengths) and volume (three lengths) are derived units.

Typically we use cm^{3} for the volume of solid items, and mL for liquids and gases.

Derived Units: Measuring Density

Density is mass divided by volume, and therefore a derived unit.

Substance	Density $\mathbf{(g / \mathbf { c m } ^ { \mathbf { 3 } } \mathbf { ~ o r ~ g / m L })}$
Air	0.0012
Gasoline	0.7
Water	1.0
Aluminum	2.8
Iron	7.87
Silver	10.50
Lead	11.34
Mercury	13.53
Gold	19.28
Osmium	22.59

Accuracy, Precision, and Significant Figures in Measurement

To be able to obtain our numbers or values, we need to measure them.

(a)

(b)

(c)

Accuracy - is the closeness to an accepted or known value.
Precision - is the reproducibility of results.

So (a) is accurate and precise, (b) is precise but not very accurate, (c) neither accurate nor precise.

Measured Numbers vs. Exact Numbers

Scientific measurements are reported so that every digit is certain except the last one, which is estimated.
So if the smallest division on a ruler is 0.1 cm , then your measurements will be to the 0.01 cm .

The first decimal place is certain, the second is uncertain.

This screw is measured as 5.10 cm long.

For our 5.10 cm value, the 1 is certain, the 0 is uncertain. It is obtained by making an estimate.
This number has three significant figures.
It is scientific convention that:
All digits in measurement up to and including the first estimated digit are significant.
(Alternatively, significant digits are the number of certain digits plus the first uncertain digit, or, digits in measurement from the first non-zero number on left to the first estimated digit on right).

Exact numbers are numbers that have no uncertainty.

They come from: Counting of discrete objects. E.g. 3 eggs.
Defined quantities: $1 \mathrm{lb}=16 \mathrm{oz}$.
Integral numbers that are part of an equation: circumference of a circle $=2 \pi \mathrm{r}$.
(The 2 is an exact number).

We assume they have infinite number of significant figures, meaning they do not limit the number of significant figures in a calculation.

Guidelines to significant figures in a measured quantity

1. Nonzero digits are always significant.

$$
457 \mathrm{~cm}(3 \text { sig. figs }) \quad 2.5 \mathrm{~g}(2 \text { sig. figs })
$$

2. Zeros between non-zero digits are always significant.

$$
1005 \mathrm{~kg} \text { (4 sig. figs) } \quad 1.03 \mathrm{~cm} \text { (3 sig. figs) }
$$

3. Zeros at the beginning of a number are never significant; they merely indicate the position of the decimal point.

$$
0.02 \mathrm{~g}(1 \text { sig. fig }) \quad 0.0026 \mathrm{~cm}(2 \text { sig. figs })
$$

4. Zeros that fall both at the end of a number and after a decimal point are always significant.

$$
0.0200 \mathrm{~g}(3 \mathrm{sig} . \text { figs }) \quad 3.0 \mathrm{~cm}(2 \text { sig. figs })
$$

5. When a number ends in zero but contains no decimal point, the zeros may or may not be significant.

$$
130 \mathrm{~cm}(2 \text { or } 3 \text { sig. figs }) \quad 10,300 \mathrm{~g}(3,4, \text { or } 5 \text { sig. figs })
$$

The use of exponential (scientific) notation can remove the possible ambiguity seen in the last example...

Scientific Notation is the clearest way to present the number of significant figures unambiguously.

We use a number between $\mathbf{1}$ and $\mathbf{1 0}$ followed by the appropriate power of 10 .

Using exponential notation, 10300 g can be written:
$1.03 \times 10^{4} \mathrm{~g}$ (three significant figures)
$1.030 \times 10^{4} \mathrm{~g}$ (four significant figures)
$1.0300 \times 10^{4} \mathrm{~g}$ (five significant figures)
(Alternatively, you can put a decimal point after the zeros to indicate they are measured.
E.g. 700. indicates 3 sig figs).

Rounding Numbers: Significant Figures in Calculations

In multiplication and division the result must be reported with the same number of significant figures as the measurement with the fewest significant figures.

1. If the leftmost digit to be removed is less than five, the preceding number is left unchanged.

Rounding 7.248 to 2 sig. figs gives 7.2
2. If the leftmost digit to be removed is five or greater, the preceding number is increased by one.

Rounding 4.735 to three significant figures gives 4.74
Rounding 2.376 to two significant figures gives 2.4

In addition and subtraction the result cannot have more digits to the right of the decimal point than any of the original numbers.

Or put another way, the answer must have the same number of decimal places as the quantity with the fewest number of decimal places.

$$
\begin{array}{lc}
\text { E.g. } \\
& \\
& 20.4 \\
& 1.322 \\
& 83 \\
\hline & 104.722
\end{array}
$$

The sum of these numbers is correctly reported as rounded off to $\mathbf{1 0 5}$

Converting from One Unit to Another

This is achieved via the Factor-Label Method of Solving Problems (also called Dimensional analysis method).

```
Given Quantity x Conversion Factor = Desired Quantity
```

This uses conversion factors usually found in lists inside the back cover of book/handouts etc.

$$
\begin{array}{ll}
\text { E.g. } & 1 \mathrm{in} .=2.54 \mathrm{~cm} \text { (exactly) } \\
& 1 \mathrm{mile}=1.609 \mathrm{~km} \\
& 1 \mathrm{lb}=453.6 \mathrm{~g}
\end{array}
$$

Problem: how tall in cm is AJR if his height is 75.0 inches ?

$$
\begin{aligned}
75 \text { in } \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{j} h} & =190.5 \mathrm{~cm} \\
& =191 \mathrm{~cm} \text { to } 3 \mathrm{sig} \text { figs }
\end{aligned}
$$

The inch units cancel, leaving the answer in cm .

Be aware of units raised to a power:

$$
\left.\left.\begin{array}{l}
1 \text { in }=2.54 \mathrm{~cm} \\
\text { But }(1 \mathrm{in})^{3}=(2.54 \mathrm{~cm})^{3} \\
\text { Which is } 1^{3} \mathrm{in}^{3}=2.54^{3} \mathrm{~cm}^{3} \\
\text { Therefore } 1 \mathrm{in}^{3}=16.4 \mathrm{~cm}^{3}
\end{array} \quad(=16.387064)\right) \text { (3 sig figs }\right) \text { }
$$

Summary of Dimensional Analysis

In using dimensional analysis to solve problems, we will always ask three questions:

1. What data are we given in the problem?
2. What quantity do we wish to obtain in the problem?
3. What conversion factors do we have available to take us from the given quantity to the desired one?

Problem: Convert $144 \mathrm{in}^{3}$ to mL .

$$
\begin{aligned}
& =2360 \mathrm{~mL}(3 \mathrm{sig} \mathrm{figs}) \\
& =2.36 \times 10^{3} \mathrm{~mL}
\end{aligned}
$$

Problem: What is the volume (in cm^{3}) of a 63.4 g piece of metal with a density of $12.86 \mathrm{~g} / \mathrm{cm}^{3}$?

$$
\text { Density }=\frac{\text { Mass }}{\text { Volume }}
$$

Rearrange to get \quad Volume $=\frac{\text { Mass }}{\text { Density }}$

$$
=63.4, \mathrm{~g}^{\prime} \times \frac{\mathrm{cm}^{3}}{12.86, \mathrm{~g}^{\prime}} \quad=4.93 \mathrm{~cm}^{3}(3 \text { sig figs })
$$

