2018 ORG MECH: Nucleophiles and Bases

Quiz #1	20 points	NAME:	
1) By drawing correct Lewis structures for the following four IONIC compounds, determine how many <i>lone pairs</i> (non bonding pairs) of electrons are present in each basic reagent. (6pts)			
a) KOH			
b) NaNH ₂			
c) NaH			
d) K ₂ CO ₃			
-	or them, and determine ho	covalent species – draw Lewis w many lone pairs are present for each	
e) Pyridine	e (C ₅ H ₅ N)		
f) CH ₃ MgE	Br		

3) The below molecule has two relatively acidic Hydrogens, connected to the oxygen containing functional groups on the left and the right hand sides of this species.

- a) What is the -CO₂H containing function group called? (1pt)
- b) What is the oxygen containing functional group on the left called? Your precise answer should include **two** words (functional group name <u>and</u> classification). (1pt)
- c) Draw the two corresponding conjugate bases (oxygen anions) that would be produced by deprotonation at each OH site. (2pts)

d) One of the oxygen anions has the benefit of resonance stabilization – draw these two resonance structures, and show the electron movement that converts one into the other (and back again). (3pts)

4) Draw a structural isomer of cyclohexene. (1pt)

5) Nucleophilicity and Basicity are both characterized by movement of two electrons – provide one *difference* between nucleophiles and bases. (1pt)

6) Balance (complete) the following equation. (1pt)

Bonus question for up to 1point

Provide the (most complete) IUPAC name for the following molecule.

** Ac See See See See See See See See See Se	
Act ant 2775205560756075	T → ³
Li Be Septim 12 Na Mg Na Mg	
57-70 *** *** ***	
Scandum 21 SC 4 98 39 39 39 39 103 103 103 103 103 103 103 103 103 103	
The state of the s	
Chocalum 23 98 molybdanum 106 NG 198 molybdanum 108 NG 198 molybdanum 108 NG 198 NG 19	
Managaress 25 Man 25 Ma	
Te Smann 189 % Smann 92 M Te S	
27	
Pd 106.42 Pd 150.62 Pd 150	
Be de la constant de	
The state of the s	
Semanna Semann	
To See See See See See See See See See Se	
Po P	
Z S S S S S S S S S S S S S S S S S S S	
R # # * * * * * * * * * * * * * * * * *	He Te

2018 ORG MECH: Nucleophiles and Bases

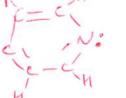
20 points Quiz #1

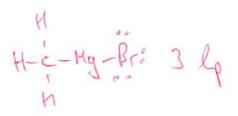
NAME:

1) By drawing correct Lewis structures for the following four IONIC compounds, determine how many lone pairs (non bonding pairs) of electrons are present in each basic reagent. (6pts)

a) KOH

b) NaNH₂


- Na SiN-H 2 lp
- d) K_2CO_3

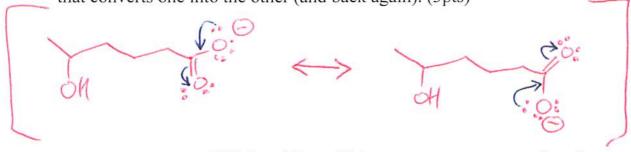

c) NaH

2) Compounds (e) and (f) are totally covalent species – draw Lewis structures for them, and determine how many lone pairs are present for each

3) The below molecule has two relatively acidic Hydrogens, connected to the oxygen containing functional groups on the left and the right hand sides of this species.

a) What is the -CO₂H containing function group called? (1pt)

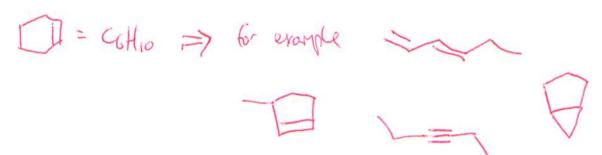
Carboxylic acid


b) What is the oxygen containing functional group on the left called? Your precise answer should include **two** words (functional group name and classification). (1pt)

secondary alcohol

c) Draw the two corresponding conjugate bases (oxygen anions) that would be produced by deprotonation at each OH site. (2pts)

TOH and THE TOP


d) One of the oxygen anions has the benefit of resonance stabilization – draw these two resonance structures, and show the electron movement that converts one into the other (and back again). (3pts)

2018-Nucs&Bases-Q1.docx

Page 2

4) Draw a structural isomer of cyclohexene. (1pt)

5) Nucleophilicity and Basicity are both characterized by movement of two electrons – provide one *difference* between nucleophiles and bases. (1pt)

Nucleophiles donate les to an elevat (aton) other than Hydrogen. (Bases do note les to Hydrogen).

Nucleophilicity is described by rates of reaction. Basicity is described by partion of equilibrium (e.g. Ka & pka).

6) Balance (complete) the following equation. (1pt)

Bonus question for up to 1point

Provide the (most complete) IUPAC name for the following molecule.